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Mechanics of In-situ Leaching 

Background

In-situ leaching and tailings
 In situ leaching is being used 
  Bulk:   Rock Salt, Potash
  From internal surfaces: Uranium, Copper, Gold

 In situ leaching
  Can reduce but not eliminate tailings
  Leaching is often used in tailings deposits
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Mechanics of In-situ Leaching 
Introduction

In-situ leaching on internal surfaces in the ground
    
    Needs an opening in the ground:

               Natural Opening such as pores or fractures
               Artificially created opening (widening an existing one or crating a new one

                                                                      Need medium going through opening

                                                                      Needs medium to remove/transport minerals

To understand the mechanics of all this we will show with experiments and models:

 How one represents fracture networks and flow through fracture networks DISCRETE FRACTURE NETWORK
         GEOFRAC & GEOFRAC FLOW/THERMAL

         FRACTURE FLOW AND TRANSPORT

 How one creates new fractures or extends existing ones through  HYDRAULIC FRACTURING

 How one creates other openings or extends existing ones through  DISSOLUTION
© Einstein
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  GEOFRAC/GEOFRAC FLOW/GEOFRAC THERMAL
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Fracture Systems - Geometry
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Fracture Systems Flow
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GEOFRAC – Stochastic Fracture Pattern Model       Rita Sousa, Violeta Ivanova , Wei Li

primary process
Poisson Planes 

secondary process
Delauney-Voronoi 
Tessellation 

GEOFRAC’s stochastic processes are implemented and optimized in MATLAB.

tertiary process
Rotation and 
Transalation 

Fracture System Geometry and Flow represented with 
Discrete Fracture Network (DFN) Models    
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 Line of Intersection between Planes 
containing the Fractures (LOI) 

Intersecting Fractures 

Fracture Intersection 

- Intersection Points 
between the Two 
Fractures and the LOI 

Fracture System Geometry and Flow represented 
with Discrete Fracture Network (DFN) Models

GEOFRAC – Flow Path and Intersection Process  
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- Intersection Points between the Two Fractures and the LOI





Intersecting Fractures





Line of Intersection between Planes containing the Fractures (LOI)





Fracture Intersection










HDR and EGS for Geothermal Energy Extraction - Basic Concepts 
       Modified from Jung, (2013)

HDR (Hot Dry Rock) in “zero” 
permeability basement - 
creating fractures through 
hydraulic fracturing. 

EGS (Engineered Geothermal 
Systems) -enhancing the existing 
fractured network through hydro-
shearing 9
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GEOFRAC – FLOW

Fracture System Geometry and Flow represented 
with Discrete Fracture Network (DFN) Models
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Model Assumptions

• Flow restricted to fractures (i.e. impervious 
rock)

• Laminar flow between parallel plates
• Fracture roughness (ε) taken into account 

through friction factor f
• Flow through most “likely” paths

5.1

1.31 





+=

h
f ε

Flow Rate (Parallel plates)  

Fracture Roughness   

ε: fracture roughness
h : aperture

w: fracture width
h: aperture
∆P: pressure gradient
µ: water dynamic viscosity
∆L: fracture length

GEOFRAC – FLOW
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Fracture Aperture Modeling

Deterministic Approach

Probabilistic Approach

Re : fracture polygon’s equivalent radius (i.e., the radius of a circle with the same area) 
h : fracture polygon aperture
α , β : coefficients that depend on the site’s geology. 

hmin, hmax : lower and upper limit
f (h) : lognormal distribution of the aperture, h, with parameters µ and σ. 

Aperture
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GEOFRAC – FLOW
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GEOFRAC-THERMAL

The heat transfer problem can be treated as heat transfer between flow and two 
parallel isothermal plates. 

P is perimeter 2(δ+w); hT is heat convection coefficient;
is the mass flow rate; L is the fracture length;

kf is the fluid heat conductivity Nu is the Nusselt number
Dh is the hydraulic diameter of the conduct Cp is the specific heat capacity

Fracture System Geometry, Flow and Temperature represented 
with Discrete Fracture Network (DFN) Models
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GEOFRAC Flow and Thermal
Flow Rate in each link –Temperature at each node

Block 2000 x 1000 x 1000 m - Rock Temperature 250 oC
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Thermal Drawdown Problem

Example:
During the Fenton Hill Project, a 
full-scale operation of the loop 
occurred from January 27 to 
April 13, 1978 (75 days in total) 
(Tester and Albright, 1979). 
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Thermal Drawdown Problem
The thermal drawdown of the Fenton Hill geothermal reservoir predicted by our 
thermal drawdown model matched the measurement.
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b(x)

Composite aperture

Flat surface
x

FLOW EXPERIMENTS
WITH HELE-SHAW CELL 

3D-printed 
composite aperture

Tracer
Water Inlet pressure 

transducer

Back pressure 
reservoirOutlet pressure 

transducer

Borosilicate window

Fracture analog

PDMS membrane

Confining pressure

Sealing 
ring

Fluid distributor

PhD Thesis Villamor Lora
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PRESSURE-CONTROLLED HELE-SHAW CELL

3D-printed 
composite aperture

σlab / Elab ~ σfield / Efield

Lab-Field scaling

Fracture analog

Water 
injection PVA

Cell PVA

Cell pressure 
transducer

Outlet pressure 
transducer

Back pressure 
reservoir

Pressure 
regulator

CMOS 
camera

Diffuse light source

Syringe pump  (tracer)

Inlet pressure 
transducer

Color filter

Pressure vessel
Borosilicate window

Plates Wall

Eresin ~ 1 GPa
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Fracture Deformation & Flow Mass Transport ConclusionsMotivation Methods

Fracture deformation and Pressure-dependent permeability 
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Fracture Deformation & Flow

 DETERMINATION OF THE FLOW FIELD SIMULATION
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Relative error ~ 5-10%

System losses ~ 180 μm

Simulations vs. Experiments
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INJECT DYE AND OBSERVE CONCENTRATION
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HDR and EGS for Geothermal Energy Extraction - Basic Concepts 
       Modified from Jung, (2013)

HDR (Hot Dry Rock) in “zero” 
permeability basement - 
creating fractures through 
hydraulic fracturing. 

EGS (Engineered Geothermal 
Systems) -enhancing the existing 
fractured network through hydro-
shearing 25



SCHEMATIC OF TESTING
Prismatic Specimens with Pre-existing Fractures – "FLAWS"

Specimen dimensions, number and orientation of flaws vary

26

PhD Theses Omar AlDajani, 
Bing Li
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Hydraulic Fracturing Tests
Test Setup – Overall View
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Central Data
Acquisition

HF Apparatus
(PVA, LVDT, PT)

Lateral
Load

Axial
Load

High-Res
Camera

High-Speed
Camera

Load Frame
Computer

High-Res
Computer

High-Speed
Computer

AE
System

Hydraulic Fracturing Tests
Test Setup – Overall View
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Hydraulic Fracturing  - Present Pressurization Device 
© MIT 
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Pressure/Volume – Time Behavior in Hydraulic Fracturing 
Test

Entire Test

Final Stage
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Visual Observations in Hydraulic Fracturing Test
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Visual Observations in Hydraulic Fracturing Test
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Hydraulic Fracturing Tests on Granite(left) and Shale (right) 
Fracturing in Tension, Shear or Both?

Vertical pre-cut notch (“flaw”) is pressurized - Fracturing Process is observed visually and with 
acoustic emissions (a –Granite, b Opalinus Shale)
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Visual Observations
Evolution of Process Zone (strains) in Granite 
         Top: major principal strains- Bottom: shear strains
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Visual Observations
Evolution of Process Zone (strains) in Shale 
         Top: major principal strains- Bottom: shear strains
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Evolution of Acoustic Emissions in Granite and Shale
  Double couple (shear) and non-double couple (opening,closing) events

THUS: Consistent visual and AE observations: Tension and 
shear  © Einstein
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Dissolution – Background on Reactive Processes

38

• Reactive transport processes often induce wormholes.
• Wormholes are long, finger-like channels that form due to the flow and 

dissolution heterogeneity. 

(Daccord, 1987) (Fredd and Fogler, 1998) Wang et al., 2016

Q=48 cm3/h

Q=4 cm3/h

Q=2 cm3/h

PhD Thesis Wei Li



Evolution of dissolution kinetics during reactive transport 
processes

• Dissolution in an initially cylindrical tube:
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Reaction-controlled 
dissolution
Reaction is slow

CaSO4·2H2O

H20

Solvent

Solute

Interface

Ca2+
SO4

2-

Ca2+SO4
2-

Step 1: Reaction

Step 2: Transport

Transport-controlled 
dissolution
Transport is slow

Interface is not in equilibrium
Ci<Ceq

Interface is in equilibrium
Ci=CeqSolute

Solvent

Solute

Solvent

Dissolution in a Tube –Theory 

Ci : Concentration at interface
Ceq : Equilibrium concentration
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Dissolution in a Tube –Theory 

Reaction-controlled

Transport-controlled

Solute

Solvent

Solute

Solvent

In a tube Dissolution flux

𝑞𝑞 = 𝑘𝑘𝑟𝑟 (𝐶𝐶𝑒𝑒𝑒𝑒 − 𝐶𝐶𝑏𝑏)𝑛𝑛

𝑞𝑞 is the mass flux,
𝐶𝐶𝑒𝑒𝑒𝑒 is the equilibrium concentration,
𝐶𝐶𝑏𝑏 is the bulk concentration (average).

𝑞𝑞 = 𝑘𝑘𝑡𝑡 (𝐶𝐶𝑒𝑒𝑒𝑒 − 𝐶𝐶𝑏𝑏)

𝑘𝑘𝑡𝑡 is the transport rate coefficient

𝑘𝑘𝑟𝑟 is the reaction rate coefficient
n is the order of reaction
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• Summary
• Extend the validity domain of the Graetz solution 

from a cylindrical tube to a tapered tube. 
• Sherwood number for a tapered tube is the same as 

that for a cylindrical tube. 
• Constant flow rate, constant effluent concentration, 

hence, constant overall dissolution rate, despite the 
enlarging of the tube. 

42

Dissolution in a Tube –Theory 

Streamline
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Dissolution in a Tube-Experiment

43

1 cm
R0=0.67mm
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• Triaxial system
• Control and monitor

• Confining stress
• Axial stress
• Injection rate
• Backpressure

• Monitor
• Inlet pressure
• Outlet pressure
• Axial displacement
• Effluent concentration
• Effluent temperature

Dissolution in a Tube-Experiment
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The 3D reconstructed based on the CT scan data. 

Dissolution in a Tube-Results
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• Test procedure:
• Specimen preparation

• Test assembly

• Overnight saturation

• Flow 500 mL water using flow rates: 5, 7.07, 10, 
14.14, 20, 28.28, 40 μL/s.

• Dry specimen, X-ray CT scan

• CT data analysis
46

Dissolution in Porous Rock Matrix –Experiment 
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• Based on the effluent concentration, the core flood tests can be 
divided into four states:

A. Initial transient state
B. Mixed dissolution quasi-steady state
C. Breakthrough transient state
D. Wormhole dissolution quasi-steady state

A B C D

Dissolution in a Porous Rock Matrix –Experiment 
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• Modeling the dissolution in a 
porous rock matrix:

• Length of wormhole section
• Extended Graetz solution for 

wormholes (tubes)
• Continuum model for the matrix;
• Compare constant Ae, with Ae ~q0.72

  Ae= Effective Surface Area
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Dissolution in a Porous Rock Matrix –Theory 
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Single Fracture Experiment

49

Fracture with rectangular crossection
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Single Fracture Experiments

Constant Geometry    Geometry Affected by Dissolution
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Conclusions
In-situ leaching on internal surfaces in the ground requires flow of
dissolving liquid through existing openings or newly created ones 
and dissolution on and transport from these surfaces.

We showed that one can better understand these processes through:

 DFN model GEOFRAC
 Flow experiments and simulations
 Hydraulic fracturing experiments
 Dissolution experiments and models
 © Einstein
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