MIT Global Summit on Mine Tailings Innovation

Mechanics of In-situ Leaching

Attempt at Understanding Using Experiments and Models

Herbert Einstein

Mechanics of In-situ Leaching

Background

In-situ leaching and tailings

In situ leaching is being used

Bulk:Rock Salt, PotashFrom internal surfaces:Uranium, Copper, Gold

In situ leaching

Can reduce but not eliminate tailings

Leaching is often used in tailings deposits

Mechanics of In-situ Leaching Introduction

In-situ leaching on internal surfaces in the ground

Needs an opening in the ground: Natural Opening such as pores or fractures Artificially created opening (widening an existing one or crating a new one

Need medium going through opening

Needs medium to remove/transport minerals

To understand the mechanics of all this we will show with experiments and models:

How one represents fracture networks and flow through fracture networks

DISCRETE FRACTURE NETWORK GEOFRAC & GEOFRAC FLOW/THERMAL

FRACTURE FLOW AND TRANSPORT

How one creates new fractures or extends existing ones through

Bow one creates other openings or extends existing ones through © Einstein

HYDRAULIC FRACTURING

DISSOLUTION

Mechanics of In-situ Leaching

Background and Introduction

Discrete Fracture Network -GEOFRAC/GEOFRAC FLOW/GEOFRAC THERMAL

Fracture Flow and Transport

Hydraulic Fracturing

Dissolution

Conclusions

Fracture Systems - Geometry

Fracture Systems Flow

Fracture System Geometry and Flow represented with Discrete Fracture Network (DFN) Models

Fracture System Geometry and Flow represented with Discrete Fracture Network (DFN) Models

GEOFRAC – Flow Path and Intersection Process

FLOW-PATH CONTRIBUTING FRACTURES (two new algorithms)

FRACTURE APERTURES: deterministic and probabilistic modeling of fracture thickness.

"CLEAN" FRACTURES: retaining only fractures that contribute to flow paths, i.e., those intersecting at least (1) two other fractures, or (2) a fracture and a boundary of the model.

HDR and EGS for Geothermal Energy Extraction - Basic Concepts

Modified from Jung, (2013)

HDR-Concept HDR (Hot Dry Rock) in "zero" permeability basement creating fractures through hydraulic fracturing.

EGS-Concept EGS (Engineered Geothermal Systems) -enhancing the existing fractured network through hydroshearing Fracture System Geometry and Flow represented with Discrete Fracture Network (DFN) Models

х

GEOFRAC – FLOW

FLOW PATH COMPUTATION

Υ

GEOFRAC – FLOW

Flow Rate (Parallel plates)

w: fracture width h: aperture Δ P: pressure gradient μ : water dynamic viscosity Δ L: fracture length

Model Assumptions

- Flow restricted to fractures (i.e. impervious rock)
- Laminar flow between parallel plates
- Fracture roughness (ε) taken into account through friction factor f
- Flow through most "likely" paths

Fracture Roughness

$$f = 1 + 3.1 \left(\frac{\varepsilon}{h}\right)^{1.5}$$

ε: fracture roughness h : aperture

GEOFRAC – FLOW

Fracture Aperture Modeling

Deterministic Approach

$$h = \alpha 2 R_e^{\beta}$$

 R_e :fracture polygon's equivalent radius (i.e., the radius of a circle with the same area)h:fracture polygon aperture α, β :coefficients that depend on the site's geology.

Probabilistic Approach

$$f_{TR}(h) = \frac{f(h)}{\int_{h_{\min}}^{h_{\max}}} \qquad h_{\min} \le h \le h_{\max}$$
$$\int_{h_{\min}}^{h_{\min}} f(h) dh$$

 h_{min} , h_{max} : lower and upper limit f(h): lognormal distribution of the aperture, h, with parameters μ and σ .

$$f(h) = \frac{1}{h\sigma\sqrt{2\pi}} \exp\left(\frac{-(\ln h - \mu)^2}{2\sigma^2}\right), \ 0 \le h \le \infty$$

Fracture System Geometry, Flow and Temperature represented with Discrete Fracture Network (DFN) Models

GEOFRAC-THERMAL

The heat transfer problem can be treated as heat transfer between flow and two parallel isothermal plates.

$$T_{2} = T_{r} - (T_{r} - T_{1})\exp(-\frac{h_{T}PL}{\dot{m}C_{P}})$$

$$h_{T} = \frac{Nu \times k_{f}}{D_{h}}$$

$$\overline{Nu_{D_{h}}} = 7.54 + \frac{0.03(D_{h}/L)Re_{D_{h}}Pr}{1 + 0.016[(D_{h}/L)Re_{D_{h}}Pr]^{2/3}}$$

P is perimeter $2(\delta+w)$; is the mass flow rate; k_f is the fluid heat conductivity D_h is the hydraulic diameter of the conduct h_{τ} is heat convection coefficient; L is the fracture length; Nu is the Nusselt number C_p is the specific heat capacity

GEOFRAC Flow and Thermal

Flow Rate in each link –Temperature at each node

Block 2000 x 1000 x 1000 m - Rock Temperature 250 °C

Thermal Drawdown Problem

Example:

During the Fenton Hill Project, a full-scale operation of the loop occurred from January 27 to April 13, 1978 (75 days in total) (Tester and Albright, 1979).

Thermal Drawdown Problem

The thermal drawdown of the Fenton Hill geothermal reservoir predicted by our thermal drawdown model matched the measurement.

Mechanics of In-situ Leaching

Background and Introduction

Discrete Fracture Network -GEOFRAC/GEOFRAC FLOW/GEOFRAC THERMAL

Fracture Flow and Transport

Hydraulic Fracturing

Dissolution

Conclusions

FLOW EXPERIMENTS WITH HELE-SHAW CELL

PhD Thesis Villamor Lora

PRESSURE-CONTROLLED HELE-SHAW CELL

Fracture deformation and Pressure-dependent permeability

FRACTURE DEFORMATION

DETERMINATION OF THE FLOW FIELD SIMULATION

Simulations vs. Experiments

INJECT DYE AND OBSERVE CONCENTRATION

2D CONCENTRATION MAPS

Dimensionless time

Î

$$=\frac{t Q}{p Vol}$$

$$\widehat{C} = \frac{C}{C_0}$$

Dimensionless concentration

Dimensionless position

$$\widehat{x} = \frac{x}{L}$$

Flux-averaged concentration

$$\widehat{C} = \frac{\sum_{i=1}^{n} C_i \cdot q_i}{\sum_{i=1}^{n} q_i}$$

PARTICLE TRACKING SIMULATIONS

Mechanics of In-situ Leaching

Background and Introduction

Discrete Fracture Network -GEOFRAC/GEOFRAC FLOW/GEOFRAC THERMAL

Fracture Flow and Transport

Hydraulic Fracturing

Dissolution

Conclusions

HDR and EGS for Geothermal Energy Extraction - Basic Concepts

Modified from Jung, (2013)

HDR-Concept HDR (Hot Dry Rock) in "zero" permeability basement creating fractures through hydraulic fracturing.

EGS-Concept EGS (Engineered Geothermal Systems) -enhancing the existing fractured network through hydroshearing

SCHEMATIC OF TESTING Prismatic Specimens with Pre-existing Fractures – "FLAWS" Specimen dimensions, number and orientation of flaws vary

PhD Theses Omar AlDajani, Bing Li

© Einstein

26

Hydraulic Fracturing Tests

Test Setup – Overall View

Hydraulic Fracturing Tests Test Setup – Overall View

Pressure/Volume – Time Behavior in Hydraulic Fracturing

Visual Observations in Hydraulic Fracturing Test

Sketch 0

Sketch 8

Visual Observations in Hydraulic Fracturing Test

Hydraulic Fracturing Tests on Granite(left) and Shale (right) Fracturing in Tension, Shear or Both?

Vertical pre-cut notch ("flaw") is pressurized - Fracturing Process is observed visually and with acoustic emissions (a –Granite, b Opalinus Shale)

© Einstein

1.6 1.8 2 2.2 1.6 1.8 2 2.2 1.6 1.8 2 2.2 1.6 1.8 2 2.2 1.6 1.8 2 2.2 1.6 1.8 2 2.2 1.6 1.8 2 2.2

x (mm)

Visual Observations Evolution of Process Zone (strains) in Shale Top: major principal strains- Bottom: shear strains

© Einstein

x (mm)

Evolution of Acoustic Emissions in Granite and Shale Double couple (shear) and non-double couple (opening, closing) events

© Einstein

shear

Mechanics of In-situ Leaching

Background and Introduction

Discrete Fracture Network -GEOFRAC/GEOFRAC FLOW/GEOFRAC THERMAL

Fracture Flow and Transport

Hydraulic Fracturing

Dissolution

Conclusions

Dissolution – Background on Reactive Processes

PhD Thesis Wei Li

- Reactive transport processes often induce wormholes.
- Wormholes are long, finger-like channels that form due to the flow and dissolution heterogeneity.

Wang et al., 2016

Evolution of dissolution kinetics during reactive transport processes

• Dissolution in an initially cylindrical tube:

Dissolution in a Tube – Theory

Dissolution in a Tube – Theory

Dissolution flux

$$q = k_r \left(C_{eq} - C_b \right)^n$$

 k_r is the reaction rate coefficient *n* is the order of reaction

Transport-controlled

$$q = k_t \left(C_{eq} - C_b \right)$$

 k_t is the transport rate coefficient

q is the mass flux, C_{eq} is the equilibrium concentration, C_b is the bulk concentration (average).

Dissolution in a Tube – Theory

- Summary
 - Extend the validity domain of the Graetz solution from a cylindrical tube to a tapered tube.
 - Sherwood number for a tapered tube is the same as that for a cylindrical tube.
 - Constant flow rate, constant effluent concentration, hence, constant overall dissolution rate, despite the enlarging of the tube.

Dissolution in a Tube-Experiment

Dissolution in a Tube-Experiment

- Triaxial system
 - Control and monitor
 - Confining stress
 - Axial stress
 - Injection rate
 - Backpressure
 - Monitor
 - Inlet pressure
 - Outlet pressure
 - Axial displacement
 - Effluent concentration
 - Effluent temperature

Dissolution in a Tube-Results

Distance from the inlet (mm)

Dissolution in Porous Rock Matrix – Experiment

- Test procedure:
 - Specimen preparation
 - Test assembly
 - Overnight saturation

- Flow 500 mL water using flow rates: 5, 7.07, 10, 14.14, 20, 28.28, 40 μL/s.
- Dry specimen, X-ray CT scal

• CT data analysis

Dissolution in a Porous Rock Matrix – Experiment

- Based on the effluent concentration, the core flood tests can be divided into four states:
 - A. Initial transient state
 - B. Mixed dissolution quasi-steady state
 - C. Breakthrough transient state
 - D. Wormhole dissolution quasi-steady state

Dissolution in a Porous Rock Matrix – Theory

- Modeling the dissolution in a porous rock matrix:
 - Length of wormhole section
 - Extended Graetz solution for wormholes (tubes)
 - Continuum model for the matrix;
 - Compare constant A_e , with $A_e \sim q^{0.72}$

 A_e = Effective Surface Area

Single Fracture Experiment

Single Fracture Experiments

Constant Geometry

Geometry Affected by Dissolution

1/64in=0.382mm

Conclusions

In-situ leaching on internal surfaces in the ground requires flow of dissolving liquid through existing openings or newly created ones and dissolution on and transport from these surfaces.

We showed that one can better understand these processes through:

DFN model GEOFRAC Flow experiments and simulations Hydraulic fracturing experiments Dissolution experiments and models